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The quasiclassical theory of superconductivity provides the most successful description of diffusive hetero-
structures comprising superconducting elements, namely, the Usadel equations for isotropic Green’s functions.
Since the quasiclassical and isotropic approximations break down close to interfaces, the Usadel equations
have to be supplemented with boundary conditions for isotropic Green’s functions �BCIGF�, which are not
derivable within the quasiclassical description. For a long time, the BCIGF were available only for spin-
degenerate tunnel contacts, which posed a serious limitation on the applicability of the Usadel description to
modern structures containing ferromagnetic elements. In this paper, we close this gap and derive spin-
dependent BCIGF for a contact encompassing superconducting and ferromagnetic correlations. This finally
justifies several simplified versions of the spin-dependent BCIGF, which have been used in the literature so far.
In the general case, our BCIGF are valid as soon as the quasiclassical isotropic approximation can be per-
formed. However, their use requires the knowledge of the full scattering matrix of the contact, an information
usually not available for realistic interfaces. In the case of a weakly polarized tunnel interface, the BCIGF can
be expressed in terms of a few parameters, i.e., the tunnel conductance of the interface and five conductance-
like parameters accounting for the spin dependence of the interface scattering amplitudes. In the case of a
contact with a ferromagnetic insulator, it is possible to find explicit BCIGF also for stronger polarizations. The
BCIGF derived in this paper are sufficiently general to describe a variety of physical situations and may serve
as a basis for modeling realistic nanostructures.
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I. INTRODUCTION

The quantum-mechanical spin degree of freedom is
widely exploited to control current transport in electronic
circuits nowadays. For instance, the readout of magnetic
hard disks is based on the giant magnetoresistance effect,
which provides the possibility to tune the conductance of,
e.g., a ferromagnet/normal-metal/ferromagnet �F /N /F�
trilayer by changing the magnetizations of the two F layers
from a parallel to an antiparallel configuration.1 However,
many functionalities of hybrid circuits enclosing ferromag-
netic elements remain to be explored. Presently, noncollinear
spin transport is triggering an intense activity due to spin-
current-induced magnetization torques,2 which offer new
possibilities to build nonvolatile memories.3 Another inter-
esting possibility is to include superconducting elements in
hybrid circuits. When a N layer is connected to a Bardeen-
Cooper-Schrieffer �BCS� superconductor �S�, the singlet
electronic correlations characteristic of S can propagate into
N because electrons and holes with opposite spins are
coupled coherently by Andreev reflections occurring at the
S /N interface.4 This so-called “superconducting proximity
effect” is among other responsible for strong modifications in
the density of states of N.5 In a ferromagnet �F�, the ferro-
magnetic exchange field Eex, which breaks the symmetry be-
tween the two spin bands, is antagonistic to the BCS-type
singlet superconducting order. However, this does not ex-
clude the superconducting proximity effect. First, when the
magnetization direction is uniform in a whole S /F circuit,

superconducting correlations can occur between electrons
and holes from opposite-spin bands, like in the S /N limit.
These correlations propagate on a characteristic distance lim-
ited by the ferromagnetic coherence length ��D /Eex, where
D is the diffusion coefficient. Furthermore, Eex produces an
energy shift between the correlated electrons and holes in the
opposite-spin bands, which leads to spatial oscillations of the
superconducting order parameter in F,6 as recently
observed.7–9 These oscillations allow to build new types of
electronic devices, such as Josephson junctions with negative
critical currents,10 which promise applications in the field of
superconducting circuits.11,12 Second, when the circuit en-
closes several ferromagnetic elements with noncollinear
magnetizations, spin-precession effects allow the existence
of superconducting correlations between equal spins.13 These
correlations are expected to propagate in a F on a distance
much longer than opposite-spin correlations. This property
could be used, e.g., to engineer a magnetically switchable
Josephson junction. These and many more effects have been
reviewed recently.14,15

To model the behavior of superconducting hybrid circuits,
a proper description of the interfaces between the different
materials is crucial. This paper focuses on the so-called dif-
fusive limit, which is appropriate for most nanostructures
available nowadays. In this limit, a nanostructure can be
separated into interfaces �or contacts� and regions character-

ized by isotropic Green’s functions Ǧ, which do not depend
on the direction of the momentum but conserve a possible
dependence on spatial coordinates. The spatial evolution of
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the isotropic Green’s functions Ǧ is described by Usadel
equations.16 One needs boundary conditions to relate the val-
ues of Ǧ at both sides of an interface. For a long time, the
only boundary conditions for isotropic Green’s functions
�BCIGF� available were spin-independent BCIGF derived
for a S /N tunnel contact.17 The only interfacial parameter
involved in these BCIGF was the tunnel conductance GT of
the contact. Such a description is incomplete for a general
diffusive spin-dependent interface. Spin-dependent S /F
boundary conditions have been first introduced in the ballis-
tic regime.18–21 Recently, many references have used spin-
dependent BCIGF �Refs. 22–32� to study the behavior of
hybrid circuits enclosing BCS superconductors, ferromag-
netic insulators, ferromagnets, and normal metals. These
BCIGF, which have been first introduced in Ref. 22, include
the GT term of Ref. 17. They furthermore take into account
the spin polarization of the interface tunnel probabilities
through a GMR term, and the spin dependence of interfacial
scattering phase shifts through G� terms. It has been shown
that the GMR and G� terms lead to a rich variety of effects.
First, the G� terms can produce effective Zeeman fields in-
side thin superconducting or normal-metal layers,22–24 an ef-
fect which could be used, e.g., to implement an absolute spin
valve.22 In thick superconducting layers, this effect is re-
placed by spin-dependent resonances occurring at the edges
of the layers.25 Second, the G� terms can shift the spatial
oscillations of the superconducting order parameter in
ferromagnets.24–26 Third, the G� term can produce supercon-
ducting correlations between equal spins, e.g., in a circuit
enclosing a BCS superconductor and several ferromagnetic
insulators magnetized in noncollinear directions.30 The GMR
terms have been taken into account for a chaotic cavity con-
nected to a superconductor and several ferromagnets.28,29 In
this system, crossed Andreev reflections and direct electron
transfers are responsible for nonlocal transport properties.
The ratio between these two kinds of processes, which deter-
mines, e.g., the sign of the nonlocal conductance,33,34 can be
controlled through the relative orientation of the ferromag-
nets magnetizations.

In this paper, we present a detailed derivation of the spin-
dependent BCIGF based on a scattering description of inter-
faces. Our results thus provide a microscopic basis for all
future investigations of ferromagnet-superconductor diffu-
sive heterostructures taking into account the spin-dependent
interface scattering. To make the BCIGF comprehensive and
of practical value, we make a series of sequential assump-
tions, starting from very general to more and more restrictive
hypotheses. In a first part, we assume that the contact is fully
metallic, i.e., it connects two conductors which can be super-
conductors, ferromagnets, or normal metals. We consider fer-
romagnets with exchange fields much smaller than their
Fermi energies, as required for the applicability of the qua-
siclassical isotropic description. We assume that the contact
nevertheless produces a spin-dependent scattering due to a

spin-dependent interfacial barrier V̄b. In this case, we estab-
lish general BCIGF which require the knowledge of the full
contact scattering matrix. Then, we assume that the contact
locally conserves the transverse channel index �specular hy-
pothesis� and spins collinear to the contact magnetization. In

the tunnel limit, assuming V̄b is weakly spin dependent, we
find that the BCIGF involve the GT, GMR, and G� terms used
in Refs. 24–32, plus additional G� terms which are usually
disregarded. In a second part, we study a specular contact
connecting a metal to a ferromagnetic insulator �FI�. If we
assume a weakly spin-dependent interface scattering, we ob-
tain the BCIGF used in Refs. 22 and 23. We also present
BCIGF valid beyond this approximation. Note that the vari-
ous BCIGF presented in this paper can be applied to noncol-
linear geometries.

Most of the literature on superconducting hybrid circuits
uses a spatially continuous description, i.e., in each conduc-
tor, the spatial dependence of the Green’s function Ǧ is ex-
plicitly taken into account. The BCIGF presented in this pa-
per can also be used in the alternative approach of the so-
called circuit theory. This approach is a systematic method to
describe multiterminal hybrid structures, in order to calculate
average transport properties35–37 but also current
statistics.38,39 It relies on the mapping of a real geometry onto
a topologically equivalent circuit represented by finite ele-
ments. The circuit is split up into reservoirs �voltage
sources�, connectors �contacts, interfaces�, and nodes �small
electrodes� in analogy to classical electric circuits. Each res-
ervoir or node is characterized by an isotropic Green’s func-

tion Ǧ without spatial dependence, which plays the role of a
generalized potential. One can define matrix currents, which
contain information on the flows of charge, spin, and
electron/hole coherence in the circuit. Circuit theory requires
that the sum of all matrix currents flowing from the connec-
tors into a node is balanced by a “leakage” current which
accounts for the nonconservation of electron/hole coherence
and spin currents in the node. This can be seen as a general-
ized Kirchhoff’s rule and completely determines all the prop-
erties of the circuit. So far, circuit theory has been developed
separately for F /N �Ref. 35� and S /N circuits �Ref. 37�.
Throughout this paper, we express the BCIGF in terms of
matrix currents. Our work thus allows a straightforward gen-
eralization of circuit theory to the case of multiterminal cir-
cuits which enclose superconductors, normal metals, ferro-
magnets, and ferromagnetic insulators, in a possibly
noncollinear geometry.

This paper is organized as follows. We first consider the
case of a metallic contact, i.e., a contact between two con-
ductors. Section II defines the general and isotropic Green’s

functions G and Ǧ used in the standard description of hybrid
circuits encompassing BCS superconductors. Section III in-
troduces the ballistic Green’s function g̃, which we use in our
derivation. Section IV discusses the scattering description of

the contact with a transfer matrix M̄. Although we consider
the diffusive limit, the scattering description is relevant for
distances to the contact shorter than the elastic mean-free

path. On this scale, one can use M̄ to relate the left and right
ballistic Green’s functions g̃L and g̃R. Section V presents an
isotropization scheme which accounts for impurity scattering

and leads to the isotropic Green’s functions ǦL�R� away from
the contact. Section VI establishes the general metallic

BCIGF which relate ǦL, ǦR, and M̄. Section VII gives more
transparent expressions of these BCIGF in various limits.
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Section VIII addresses the case of a contact with a FI side, in
analogy with the treatment realized in the metallic case. Sec-
tion IX concludes. Appendix A discusses the structure of the

transfer matrix M̄ and Appendix B gives details on the cal-
culation of the matrix current. Appendix C relates our
BCIGF to the equations previously obtained in the normal-
state limit.35,36 Appendix D discusses the BCIGF obeyed by

the retarded parts of ǦL�R� in the collinear case. For com-
pleteness, Appendix E presents the Usadel equations in our
conventions.

II. GENERAL AND ISOTROPIC GREEN’S FUNCTIONS

In Secs. II–VII, we consider a planar metallic contact be-
tween two diffusive conductors noted L �left conductor� and
R �right conductor� �see Fig. 1�. The conductor L�R� can
exhibit spin and/or superconducting correlations due to its
superconducting order parameter � or exchange field Eex, or
due to the proximity effect with other conductors. For the
primary description of electronic correlations in L and R, one
can use a general Green’s function G defined in the
Keldysh � Nambu � Spin � Coordinate space. In the station-
ary case, G can be defined as

G�r�,r��,�� =� dt

�
G�r�,r��,t − t��exp�i�

t − t�

�
� �1�

with

G�r�,r��,t − t�� = 	Gr�r�,r��,t − t�� GK�r�,r��,t − t��

0 Ga�r�,r��,t − t�� 
 , �2�

Gr�a��r�,r��,t − t�� = � i	�
�t − t����̌3����t,r��,�†�t�,r���
�

�3�

and

GK�r�,r��,t − t�� = − i�̌3����t,r��,�†�t�,r����� . �4�

Here, �¯ ,¯� and �¯ ,¯
 denote commutators and anti-
commutators, respectively, r� and r�� are space coordinates, t
and t� are time coordinates, and � is the energy. We use a
spinor representation of the fermion operators, i.e.,

�†�t,r�� = ��↑
†�t,r��,− �↓

†�t,r��,�↑�t,r��,�↓�t,r��� �5�

in the Nambu � Spin space. We denote by �̌3 the third
Nambu-Pauli matrix, i.e., �̌3=diag�1,1 ,−1 ,−1� in the
Nambu � Spin space. For later use, we also define the third
spin Pauli matrix, i.e., 
̌Z=diag�1,−1,1 ,−1�. With the above
conventions, the Green’s function G follows the Gorkov
equations

���̌3 − H�r�� + i�̌�z� − �̌imp�z��G�r�,r��,�� = ��r�,r��� �6�

and

G�r�,r��,�����̌3 − H�r��� + i�̌�z�� − �̌imp�z��� = ��r�,r��� �7�

Here, �̌ corresponds to the gap matrix associated to a BCS
superconductor �see definition in Appendix E�. Hamiltonian
H�r�� can be decomposed as

H�r�� = Hl�z� + Ht���� + V̄b�z,��� �8�

where z and �� are the longitudinal and transverse compo-
nents of r�. The part Hl�z�=−��2 /2m��2 /�z

2−Eex�z�
̌Z−EF�z�
includes a ferromagnetic exchange field Eex�z� in the direc-
tion Z� and the Fermi energy EF�z�0�=EF,L�R�, whereas the
part Ht����=−��2 /2m��2 /���

2+Vc���� includes a lateral confine-

ment potential Vc����. The potential barrier V̄b�z ,��� describes
a possibly spin-dependent and nonspecular interface. It is
finite in the area z� �−bL ,bR� only. In the Born approxima-
tion, the impurity self-energy at side Q� �L ,R
 of the inter-

face can be expressed as �̌imp�z ,��=−i�Ǧ�z ,�� /2�Q. Here,
the impurity elastic-scattering time �Q in material Q can be
considered as spin independent due to Eex�EF. The Green’s

function Ǧ�z ,��, which has already been mentioned in Sec. I,
corresponds to the quasiclassical and isotropic average of G
inside conductor L�R�. It can be calculated as40

Ǧ�z,�� = iG�r� = R� ,r�� = R� ,��/��0 �9�

with z the longitudinal component of R� and �0 the density of
states per spin direction and unit volume for free electrons.

FIG. 1. �Color online� Model of a planar contact between two
diffusive conductors L and R. The inner part of the model consists
of two ballistic zones �light gray areas�, connected together by a
scattering barrier Vb�z� located at z� �−bL ,bR� �dark gray area,
green online�. We set the end of the left/right ballistic zone at z
= �cL�R� with cL�R�−bL�R� a distance smaller or equal to the elastic
mean-free path �e

L�R� of L�R�. At this place, the ballistic Green’s
function g̃�z ,z ,�� equals g̃L�R�. The effect of Vb�z� can be described
with electronic-transmission amplitudes tL�R� and reflection ampli-
tudes rL�R�. There exists a simple relation between g̃R and g̃L, based
on the scattering parameters tL�R� and rL�R� �see Eq. �22��. The two
ballistic zones are connected to two isotropization zones which
have a size dL�R� of the order of a few �e

L�R� �dotted areas�. In the
isotropization zones, the electron dynamics is dominated by elastic-
impurity scattering. Hence, g̃�z ,z ,�� becomes isotropic away from
the contact region, and one can define, beyond the isotropization
zones, two diffusive zones �gray areas, purple online� described by

the isotropic Green’s function Ǧ�z ,��. For z→ �dL�R�, g̃�z ,z ,��
tends to Ǧ�z ,��= ǦL�R�. Note that since the transition between the
ballistic, isotropization, and diffusive zones is smooth, the choice of
the coordinates cL�R� and dL�R� in Fig. 1 is somewhat arbitrary, i.e.,
defined only up to an uncertainty of the order of a fraction of �e

L�R�

or �e
L�R�, respectively. However, this choice does not affect the

BCIGF as we show in the text.
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Since we consider the case of wide contacts, Ǧ, �̌imp, and �̌
can be considered as independent from �� .

In this paper, we consider the diffusive �i.e., quasiclassical
and isotropic� limit, i.e.,

Eex, ���,�,kBT � �/�Q � EF, �10�

where T is the temperature and kB is the Boltzmann constant.

In this regime, the spatial evolution of Ǧ�z ,�� inside L and R
is described by the Usadel equations which follow from Eqs.
�6� and �7� �see Appendix E�. The characteristic distances
occurring in the Usadel equations are �F= ��DF /Eex�1/2, �N
= ��DN /2kBT�1/2, and �S= ��DS /2��1/2 for a ferromagnet F, a
normal metal N and a superconductor S, respectively, with
DQ=�F,Q

2 �Q /3 and �F,Q the diffusion constant and Fermi ve-
locities of material Q. According to Eq. �10�, the scale �Q is
much larger than the elastic mean-free path �e

Q=�F,Q�Q. Im-
portantly, the Usadel equations alone are not sufficient to
describe the behavior of diffusive hybrid circuits. One also

needs to relate the values of Ǧ at both sides of an L /R inter-
face with BCIGF, which we derive in the next sections.

For the sake of concreteness, we give typical order of
magnitudes for the different length scales involved in the
problem. These length scales strongly depend on the detailed
composition and structure of the materials and interfaces
considered so that the applicability of the quasiclassical iso-
tropic description has to be checked in each case. The value
of bL�R� can strongly vary from a few atomic layers to a few
nanometers if the two materials constituting the interface
interdiffuse.41 The mean-free path, which strongly depends
on the impurity concentration, can be of the order of a few
nanometers.8 The superconducting lengthscale �S is usually
of the order of 10 nm for Niobium.42,43 The Cooper-pair
penetration length can reach �F�10 nm for a diluted mag-
netic allow such as CuNi �Ref. 8� or �N�1000 nm for a
normal metal such as Cu at T=20 mK.44

It is worth to note, at this point, that the derivation pre-
sented below is not restricted to stationary problems on su-
perconducting heterostructures. Actually most of the deriva-
tions made below do not rely on the specific Keldysh
structure introduced in Eqs. �1�–�4� and our results can be
directly used to describe full counting statistics in the ex-

tended Keldysh technique39 or multiple Andreev
reflections.45 In fact, boundary conditions for arbitrary time-
dependent scattering problems have been recently formu-
lated in a similar spirit.46 However, having in mind the many
concrete applications of the boundary conditions in super-
conducting heterostructures and keeping the notation as
simple as possible, we derive the BCIGF below in the frame-
work of the stationary Keldysh-Nambu Green’s functions.

III. BALLISTIC GREEN’S FUNCTION

Considering the structure of Eqs. �6�–�8�, for z ,z��−bL
or z ,z��bR, one can expand G in transverse modes as47

G�
,��
��r�,r��,��

= �
ns,n�s�

�G̃ns,n�s�
�
,��
��z,z�,��

�n�����m
� �����

2����n�z,���m�z�,��

�exp�iskn�z�z − is�km�z��z��� �11�

In this section, we use spin indices 
 ,
�� �↑ ,↓
 which cor-
respond to spin directions parallel or antiparallel to the di-
rection Z� , and Nambu indices � ,��� �e ,h
 for electron and
hole states. The indices s ,s�� �+,−
 account for the longitu-
dinal direction of propagation �we use 
 ,
�= 
1, � ,��
= 
1, and s ,s�= 
1 in mathematical expressions�. We intro-
duce the wave function �n���� for the transverse channel n,
i.e., Ht�����n����=En�n����, and the corresponding longitudinal
momentum and velocity, i.e., kn�z�= �2m�EF�z�−En�
1/2 /�
and �n�z�=�kn�z� /m. Importantly, we have disregarded the
dependences of kn and �n on Eex and � due to Eq. �10�. The

� decoration denotes that the Green’s function G̃ can have a
general structure in the Keldysh � Nambu � Spin � Channel
� Direction space, noted E in the following. In contrast,

∨ denotes the fact that ǦL�R� has no structure in the
Channel � Direction subspace, noted E in the following �see
the summary of notations in Table I�. Due to Eqs. �6� and �7�,
G̃�z ,z� ,�� is not continuous at z=z�.37,47 One can use48,49

TABLE I. Meaning of the various decorations used in this paper for operators defined in the E space. Each
decoration corresponds to a particular structure in the transverse channels �index n�, propagation direction
�index s�, spin �index 
�, Nambu �index �� and Keldysh subspaces.

Structure allowed in the subspaces

Channels n Direction s Spins 
 Nambu � Keldysh

Ã Yes Yes Yes Yes Yes

Ǎ No No Yes Yes Yes

Ă Yes Yes Yes Diagonal No

Ā Yes Yes Yes No No

Â Yes Yes No No No

A� Yes No No No No
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G̃�z,z�,�� = − i��g̃�z,z�,�� + �̂3 sgn�z − z��� �12�

with �̂3 as the third Pauli matrix in the direction of propaga-

tion space, i.e., ��̂3�ns,ms�

,
� =s�ss��nm�

�����1K. Equation �12�

involves a ballistic Green’s function g̃�z ,z� ,���E which is
continuous at z=z�. We will see below that this quantity
plays a major role in the derivation of the BCIGF.

For later use, we now derive the equations of evolution

followed by G̃. Inserting Eq. �11� into Eqs. �6� and �7�, one
can check that, for z�z� and z ,z��−bL �Q=L� or z ,z�
�bR �Q=R�, G̃ follows the equations

	i��̂3��Q
�

�z
+ i�̌ − �̌imp�z�
 � G̃�z,z�,�� = 0 �13�

and

G̃�z,z�,�� � 	− i��̂3��Q
�

�z�
+ i�̌ − �̌imp�z��
 = 0. �14�

We have introduced above a velocity matrix ��Q with a struc-

ture in the channels subspace only, i.e., ���L�R��ns,n�s�
�
,��
�=�n�z

�0��ss��nn��

�����1K, with 1K as the identity matrix in the
Keldysh space. We have furthermore assumed that the so-

called envelope function G̃ varies smoothly on the scale of
the Fermi wavelength, in order to neglect terms proportional
to �2 /�z2 and �2 /�z�2 in Eqs. �13� and �14�.47

IV. SCATTERING DESCRIPTION OF A METALLIC
CONTACT

We now define, at both sides of the barrier V̄b, two ballis-
tic zones �with no impurity scattering� located at z� �−cL ,
−bL� and z� �cR ,bR�, with cL�R�−bL�R���e

L�R� �see Fig. 1�. In
the region z� �−cL ,cR�, we can disregard the superconduct-

ing gap matrix �̌ since cL+cR��S. Therefore, the electron
and hole dynamics can be described with the Schrödinger
equation

���̌3 − H�r�����r�,�� = 0 �15�

or, equivalently

�†�r�,�����̌3 − H�r��� = 0 �16�

whose solution has the form50

��,
�r�,�� = �
n,s

�n,s
�,
�z,��

�n����
�2���n�z�

eis�kn�z�z �17�

in the ballistic zones. Here, ��r� ,�� is a vector in the Spin
� Nambu � Keldysh space, and ��z ,�� is a vector in the E
space. The index s corresponds again to the longitudinal di-
rection of propagation. We have introduced � indices in the
exponential factors of Eq. �17� because, for the same sign of
wave vector, electrons, and holes go in opposite directions.
Therefore, in Eq. �17�, s=+ /−1 systematically denotes the
right/left-going states. One can introduce a transfer matrix

M
�

����E such that ��cR ,��=M
�

�����−cL ,��. The matrix

M
�

and the Landauer-Büttiker scattering matrix can be con-
sidered as equivalent descriptions of a contact, provided one
introduces small but finite transmission coefficients to regu-

larize M
�

in case of perfectly reflecting channels. This regu-
larization procedure does not affect practical calculations as
illustrated in Sec. VII D. Since H�r�� does not couple electron

and holes, M
�

has the structure

M
�

= 	Me��� 0

0 Me�− ���
 �18�

in the Nambu subspace. Moreover, M
�

is proportional to the
identity in the Keldysh space, like H�r��. For later use, we
point out that flux conservation leads to51

M
�

†�̂3M
�

= M
�

�̂3M
�

† = �̂3. �19�

We now connect the above scattering approach with the
Green’s function description.18 With the assumptions done in
this section, Eqs. �6� and �7� give, for z� �−cL ,cR� and z�
�z

���̌3 − H�r���G�r�,r��,�� = 0 �20�

and

G�r�,r��,�����̌3 − H�r���� = 0. �21�

We recall that in the ballistic zones, G takes the form �11�. In
the domain z��z, a comparison between Eqs. �15�, �16�,
�20�, and �21� gives, in terms of the decompositions Eqs. �11�
and �17�

ŨG̃�cR,cR + 0−,��Ũ = M
�

���ŨG̃�− cL + 0+,− cL,��ŨM
�

†��� .

We have introduced above the transformation Ũ= �1+ �̌3

+ �1− �̌3��̂1� /2 to compensate the fact that the � indices do
not occur in the exponential terms of Eq. �11�. Using Eq.
�12�, we obtain

g̃R = M̄g̃LM̄† �22�

with g̃L= g̃�−cL ,−cL ,��, g̃R= g̃�cR ,cR ,��, and

M̄ = 	Me��� 0

0 �̂1Me�− ����̂1

 �23�

in the Nambu subspace. Note that due to Eq. �19�, one has

M̄†�̂3M̄ = M̄�̂3M̄† = �̂3. �24�

We now discuss how spin dependences arise in our prob-
lem. Due to the hypotheses required to reach the diffusive
limit �see Eq. �10��, we have neglected the dependence of kn
and �n on the exchange field Eex, and the energy �. Accord-

ingly, we have to disregard the dependence of M̄ on Eex and

�. This does not forbid that M̄ depends on spin. Indeed, in
the general case, when an interface involves a F material

which is ferromagnetic in the bulk, the transfer matrix M̄ can
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depend on spin for two reasons: first, the wave vectors of the
electrons scattered by the barrier can depend on spin due to

Eex, and second, the interface barrier potential V̄b can itself
be spin dependent. Importantly, one can check that Eex and

V̄b occur independently in Eqs. �6� and �7�. The value of Eex

and the spin dependence of V̄b are not directly related be-
cause the second depend on properties such as interfacial
disorder or discontinuities in the electronic-band structure,
which do not influence Eex far from the interface. Therefore,
nothing forbids to have simultaneously Eex�EF �this can
occur, e.g., in a diluted ferromagnetic alloy such as PdNi�
and a spin dependent M̄, due to a spin-dependent interface

potential V̄b. It is even possible to obtain this situation arti-
ficially, by fabricating, e.g., a contact with a very thin FI
barrier separating two normal metals or superconductors.
Note that in spite of Eex�EF, the exchange field Eex can play
a major role in diffusive hybrid circuits by modifying dras-
tically the spatial evolution of the isotropic Green’s function

ǦF�z ,�� inside a ferromagnetic metal F on the scale �F �see
Appendix E�.

V. ISOTROPIZATION SCHEME

In this section, we show that the Green’s function
g̃�z ,z�=z ,�� becomes isotropic in momentum space �i.e.,
proportional to the identity in the E subspace� due to impu-
rity scattering, when moving further away from the contact.
One can consider that this process occurs in “isotropization
zones” with a size dL�R� of the order of a few �e

L�R� for side
L�R� of the contact52 �dotted areas in Fig. 1�. Beyond the
isotropization zones, quasiparticles reach diffusive zones
�see Fig. 1� characterized by isotropic Green’s functions

Ǧ�z ,�� with no structure in the E subspace. We show below

that g̃�z ,z�=z ,�� tends to Ǧ�z= �dL�R� ,�� at the external
borders z= �dL�R� of the isotropization zones. Note that the
results presented in this section do not depend on the details
of the isotropization mechanism.

We study the spatial evolution of G̃ in the isotropization
zones located at z� �−dL ,−cL� and z� �cR ,dR�, using Eqs.

�13� and �14�. The superconducting gap matrix �̌ can be
neglected from these equations due to dL�R���S. We thus
obtain, for the isotropization zone of side Q and z�z�

	�̂3��Q
�

�z
+

Ǧ�z,��
2�Q


 � G̃�z,z�,�� = 0 �25�

and

G̃�z,z�,�� � 	− �̂3��Q
�

�z�
+

Ǧ�z�,��
2�Q


 = 0. �26�

Due to �Q��e
Q, one can disregard the space dependence of

Ǧ�z ,�� in the above equations. We will thus replace Ǧ�z ,��
by its value ǦQ at the beginning of the diffusive zone Q, i.e.,

ǦL�R�= Ǧ�z= �dL�R� ,��. For later use, we recall that ǦL and

ǦR fulfill the normalization condition

ǦL
2 = ǦR

2 = 1 �27�

with 1 as the identity in the E space. In the isotropization
zone of side Q, Eqs. �12� and �25�–�27� give

G̃�z,z�,�� = − i�P̃Q��Q�z��

��g̃Q + sgn�z − z���̂3�P̃Q�− �Q�z��� �28�

with �L�R��z�=z
cL�R� and

P̃Q�z� = ch�z/2��Q�Q� − �̂3ǦQsh�z/2��Q�Q� �29�

for Q� �L ,R
. Note that the choice of the coordinate dL�R� in
Fig. 1 is somewhat arbitrary, i.e., defined only up to an un-
certainty of the order of �e

L�R� because there is a smooth tran-
sition between the isotropization and diffusive zones of the

contact. As a result, G̃ must tend continuously to its limit

value G̃dif f in the diffusive zones. The function G̃dif f�z ,z� ,��
must vanish for �z−z����e

Q �see, e.g., Ref. 53�. This imposes
to cancel the “exponentially divergent” terms in Eq. �28�,
which requires37

��̂3 + ǦL��g̃L − �̂3� = 0, �30�

�g̃L + �̂3���̂3 − ǦL� = 0, �31�

��̂3 − ǦR��g̃R + �̂3� = 0, �32�

�g̃R − �̂3���̂3 + ǦR� = 0. �33�

For z→ �dL�R� we obtain from Eqs. �28�–�33� that G̃ finally
approaches

G̃dif f�z,z�,�� = − i� exp�−
�z − z��

2��L�R��Q
�

��ǦL�R� + sgn�z − z���̂3� �34�

so that g̃L�R��z ,z�=z ,�� tends to ǦL�R�. As required, the ex-

pression �34� of G̃dif f does not depend on the exact choice of
the coordinate dL�R� and vanishes for �z−z����e

Q. Equations
�28�–�33� indicate that the decay length for the isotropization
of g̃L�R��z ,z�=z ,�� is maxn��2m�EF,L�R�−En��1/2�L�R��=�e

L�R�,
as anticipated above. Moreover, inserting Eq. �34� into Eq.
�11� leads to an expression of G whose semiclassical and

isotropic average corresponds to ǦL�R�, as expected.54 Impor-

tantly, from Eqs. �28�–�33�, one sees explicitly that G̃ is
smooth on a scale of the Fermi wavelength, which justifies a
posteriori the use of the approximated Eqs. �13� and �14� in
this section.

VI. MATRIX CURRENT AND GENERAL BOUNDARY
CONDITIONS

Our purpose is to establish a relation between ǦL and ǦR.
To complete this task, it is convenient to introduce the matrix
current37
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Ǐ�z,�� =
e2�

�m
� �d�� �

�z
−

�

�z�
�G�r�,r��,���

r�=r��
. �35�

This quantity characterizes the transport properties of the cir-
cuit for coordinate z and energy �. It contains information on
the charge current �see Sec. VII E� but also on the flows of
spins and electron-hole coherence. Note that in this paper, e
denotes the absolute value of the electron charge. Using Eq.
�11� and the orthonormalization of the transverse wave func-
tions �n


, the matrix current is written as

Ǐ�z,�� = 2iGq Trn,s��̂3G̃�z,z,���/� . �36�

for z�−bL or z�bR. Here Trn,s denotes the trace in the E
subspace and Gq�e2 /2�� is the conductance quantum. In-
side the isotropization zones, using Eq. �28�, one obtains49

Ǐ�z,�� = 2Gq Trn,s��̂3P̃Q��Q�z��g̃QP̃Q�− �Q�z��� . �37�

Considering that P̃Q�z� has a structure in the E subspace only

and that P̃Q�−�Q�z���̂3P̃Q��Q�z��= �̂3, one finds

Ǐ�z,�� = 2Gq Trn,s��̂3g̃L�R�� = ǏL�R���� �38�

at any point in the left �right� isotropization zone. We con-
clude that, quite generally, the matrix current is conserved
inside each isotropization zone. We will see in next para-
graph that this property is crucial to derive the BCIGF.

In order to express g̃L in terms of ǦL and ǦR, and M̄, we

multiply Eq. �30� by ǦL from the left and Eq. �32� by ǦLM̄†

from the left and by �M̄†�−1 from the right. Then, we add up
the two resulting equations after simplifications based on
Eqs. �22�, �24�, and �27�. This leads to

ǏL��� = 2Gq Trn,s�2D̃L
−1�ǦL�̂3 + 1� − 1� �39�

with D̃L=1+ ǦLM̄†ǦRM̄. A similar calculation leads to

ǏR��� = 2Gq Trn,s�2D̃R
−1�ǦR�̂3 − 1� + 1� �40�

with D̃R=1+ ǦR�M̄†�−1ǦLM̄−1. Equations �39� and �40� rep-

resent the most general expression for ǏL�R���� in terms of the

isotropic Green’s functions ǦL�R� and the transfer matrix M̄.
The conservation of the matrix current up to the beginning
z= �dL�R� of the diffusive zones allows to identify these ex-
pressions with

ǏL�R���� = �−
A

�L�R�
Ǧ�z,��

�Ǧ�z,��
�z

�
z=�dL�R�

. �41�

Here, �L�R� denotes the resistivity of conductor L�R� and A
the junction area. Formally speaking, Eqs. �39�–�41� com-
plete our task of finding the general BCIGF for spin-
dependent and diffusive metallic interfaces. We recall that to
derive these equations, we have assumed a weak exchange
field in ferromagnets �Eex�EF�, as required to reach the dif-
fusive limit �see Eq. �10��. However, we have made no re-

striction on the structure of the contact transfer matrix M̄. In

particular, M̄ can be arbitrarily spin polarized and it is not

necessarily spin conserving or channel conserving. However,
at this stage, a concrete calculation requires the knowledge of

the full M̄ �or equivalently the full scattering matrix�. Usu-
ally this information is not available for realistic interfaces
and one has to reduce Eqs. �39� and �40� to simple expres-
sions, using some simplifying assumptions. For a spin-
independent tunnel interface, Eqs. �39� and �40� can be ex-
pressed in terms of the contact tunnel conductance GT only,
which is a formidable simplification.17 Another possibility is
to disregard superconducting correlations. In this case, Eqs.
�39� and �40� lead to the normal-state BCIGF introduced in
Refs. 35 and 36 �see Appendix C for details�. The normal-
state BCIGF involve the conductance GT but also a coeffi-
cient GMR which accounts for the spin dependence of the
contact scattering probabilities, and the transmission and re-
flection mixing conductances Gmix

t and Gmix
L�R�,r which account

for spin-torque effects and interfacial effective fields.55 We
will show below that for a circuit enclosing superconducting
elements, the BCIGF can also be simplified in various limits.

Note that since the transition between the ballistic, isotro-
pization, and diffusive zones is smooth, the choice of the
coordinates dL�R� and cL�R� in Fig. 1 is somewhat arbitrary,
i.e., defined only up to an uncertainty of the order of �e

L�R� or
a fraction of �e

L�R�, respectively. However, one can check that
this choice does not affect the BCIGF. First, a change in cL
and cR by quantities �cL and �cR of the order of a fraction of

�e
L�R� requires to replace the matrix M̄ appearing in Eqs.

�39�–�41� by A� RM̄A� L, where the matrices A� R and A� L have a
nontrivial �i.e., diagonal� structure in the E subspace only,

with diagonal elements A� L,n,s=exp�i s �cL kn� and A� R,n,s

=exp�i s �cR kn�. Since ǦL�R� commutes with A� R�L�, this
leaves the BCIGF unchanged. Second, due to Eqs. �30�–�33�,
the BCIGF do not depend either on the exact values of dL
and dR.

VII. CASE OF A WEAKLY SPIN-DEPENDENT S ÕF
CONTACT

A. Perturbation scheme

In the next sections, we assume that the transverse chan-
nel index n and the spin index 
= ↑ ,↓ corresponding to spin
components along Z� are conserved when electrons are scat-

tered by the potential barrier V̄b between the two ballistic

zones �we use for instance V̄b�z ,���=V0�z�
̌0+V1�z�
̌Z�. In
this case, one can describe the scattering properties of the
barrier with parameters Tn, Pn, �n

L�R�, and d�n
L�R� defined from

�tL�R�,n
�2 = Tn�1 + 
Pn� �42�

and

arg�rL�R�,n
� = �n
L�R� + 
�d�n

L�R�/2� �43�

with tL�R�,n
 the transmission amplitude from side L�R� to
side R�L� of the barrier and rL�R�,n
 the reflection amplitude
at side L�R�. The parameter Pn corresponds to the spin po-
larization of the transmission probability �tR�L�,n
�2. The pa-
rameters d�n

L and d�n
R characterize the spin dependence of
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interfacial phase shifts �SDIPS�, also called in other refer-
ences spin-mixing angle.19–21 In our model, Pn and d�n

L�R�

can be finite due to the spin-dependent interface potential V̄b.
Due to flux conservation and spin conservation along Z� , the
parameters Tn, Pn, �n

L�R�, and d�n
L�R� are sufficient to deter-

mine the value of the whole Me matrix �see Appendix A for
details�. Then, using Eq. �23�, one can obtain an expression

for M̄. We will work below at first order in Pn and d�n
L�R�. In

this case, M̄ can be decomposed as

M̄ = M̂0�1 + �X̄� . �44�

The nth diagonal element of M̂0 in the transverse channel
subspace has the form, in the propagation direction subspace

M̂n,n
0 = �

iei��n
L+�n

R�/2

�Tn

− iei��n
R−�n

L�/2�Rn

Tn

iei��n
L−�n

R�/2�Rn

Tn
−

ie−i��n
L+�n

R�/2

�Tn

�
̌0 �45�

with Rn=1−Tn. Accordingly, the matrix �X̄ is, in the propa-
gation direction subspace

�X̄ = 	�X̄++ �X̄+−

�X̄+−
� − �X̄++


 �46�

with

�X̄n+,n+ =
i
̌Z

4Tn
�Tnd�n

L + �2 − Tn�d�n
R� �47�

and

�X̄n+,n− =

̌Ze−i�n

L

2
� Pn

�Rn

− i
�Rn

Tn
d�n

R� . �48�

One can check that Eqs. �44�–�48� are consistent with Eq.

�24�. Due to Eq. �23�, the matrices M̂0 and �X̄ are propor-

tional to the identity in the Nambu subspace. The matrix M̂0

is determined by the parameters Tn and �n
L�R�. It has a struc-

ture in the E subspace only. In contrast, �X̄ is a first-order
term in Pn and d�n

L�R� with a structure in the E subspace but

also in the spin subspace. We conclude that the matrices M̂0

and ǦL�R� commute with each other whereas �X̄ commutes

neither with M̂0 nor with ǦL�R�.
We want to express the matrix current of the isotropiza-

tion zones as

ǏL�R���� = ǏL�R�
0 ��� + ǏL�R�

1 ��� �49�

with ǏL�R�
0 ��� and ǏL�R�

�1� ��� as zeroth and first-order terms in

�X̄, respectively. We will mainly focus on the calculation of

ǏL��� because the calculation of ǏR��� is similar. To develop

the expression �39� of ǏL���, one can use

D̃L
−1 = J̃ − J̃�ṼJ̃ + o��Ṽ2� �50�

with

�Ṽ = ǦLǦRQ̂0�X̄ + ǦL�X̄†Q̂0ǦR, �51�

Q̂0 = �M̂0�†M̂0 �52�

and

J̃ = �1 + Q̂0ǦLǦR�−1. �53�

For later use, we note that

J̃ =
ǦRǦL + Q̂0

−1

�ǦL,ǦR
 + Q̂0 + Q̂0
−1

. �54�

In the next sections, we will substitute Eq. �50� into Eq. �39�,
to express ǏL

�0���� and ǏL
�1���� in terms of the scattering param-

eters of the contact.

B. Zeroth order component of the matrix current

We first discuss the conservation of the zeroth-order ma-
trix current across the contact. From Eqs. �22� and �38�, one

finds ǏR
0���=2iGq Trn,s��̂3M̂0g̃L�M̂0�†� /�. Since M̂0 has a

structure in the E subspace only, the cyclic property of the

trace Trn,s yields ǏL
0���= ǏR

0���= Ǐ0���. Hence, the matrix cur-
rent is conserved across the contact in the spin-degenerate
case.

We now calculate Ǐ�0����. Since M̂0 commutes with ǦL�R�,
Eq. �39� gives

Ǐ�0���� = 2Gq Trn,s�J̃�2�̂3ǦL + 1 − Q̂0ǦLǦR�� . �55�

From Eq. �45�, one finds

Q̂0 = − 2T̂0
−1�1 − T̂0�cos��n

L��̂1 + sin��n
L��̂2� + �2T̂0

−1 − 1��̂0

�56�

and

Q̂0
−1 = �̂3Q̂0�̂3. �57�

In Eq. �56�, the matrices �̂0, �̂1, and �̂2 refer to the identity,
the first and second Pauli matrices in the propagation direc-

tion subspace, respectively. We use �T̂0�ns,ms�
�
,��
�

=Tn�ss��nm�

�����1K. We find that Q̂0+ Q̂0
−1 has a diagonal

structure in the propagation direction space. Therefore, using

expression �54� for J̃, and performing the trace over the
channel and propagation direction indices, we obtain

Ǐ�0���� = 4Gq�
n

Tn�ǦR,ǦL�

4 + Tn��ǦL,ǦR
 − 2�
. �58�

Equation �58� corresponds to the expression obtained in Ref.
37 for a spin-independent contact.56 This expression does not
involve any scattering phase shift.

C. First-order component of the matrix current

We now concentrate on the contribution ǏL�R�
�1� ��� to the

matrix current to first order in �X̄. Equations �39� and �50�
lead to
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ǏL
�1���� = − 4Gq Trn,s�J̃�ṼJ̃�1 + �̂3ǦL�� �59�

with �Ṽ given by Eq. �51�. Using Eqs. �46�–�48�, �56�, and
�57�, and performing the trace over the transverse channel
and propagation direction indices �see Appendix B for de-
tails�, one finds

ǏL
�1���� = 2Gq�

n

�4 + Tn��ǦL,ǦR
 − 2��−1

� �4TnPn��
̌Z,ǦR
,ǦL� − i8Rnd�n
L�
̌Z,ǦL�

+ iTn�Tnd�n
L + �2 − Tn�d�n

R��ǦR�
̌Z,ǦR�,ǦL�

− iTn�Tnd�n
R + �2 − Tn�d�n

L���
̌Z,ǦR�ǦL,ǦL��

��4 + Tn��ǦL,ǦR
 − 2��−1. �60�

A comparison between Eqs. �39� and �40� indicates that the

expression of ǏR
�1���� can be obtained by multiplying the ex-

pression �60� of ǏL
�1���� by −1, replacing d�n

L�R� by d�n
R�L�, and

ǦL�R� by ǦR�L�. Note that the expressions of ǏL
�1���� and ǏR

�1����
involve the SDIPS parameters d�n

L and d�n
R but not the spin-

averaged phases �n
L and �n

R.

D. Expression of the matrix current in the tunnel limit

We now assume that the contact is a tunnel barrier �Tn
�1�, which seems reasonable considering the band-structure
mismatch between most S and F materials. At first order in

Tn, the matrix currents ǏL�R���� take the very transparent form

2ǏL��� = GT�ǦR,ǦL� + GMR��
̌Z,ǦR
,ǦL� + iG�
L�
̌Z,ǦL�

− iG�
L��
̌Z,ǦR�ǦL,ǦL� + iG�

R�ǦR�
̌Z,ǦR�,ǦL�
�61�

and

2ǏR��� = GT�ǦR,ǦL� + GMR�ǦR,�
̌Z,ǦL
� − iG�
R�
̌Z,ǦR�

+ iG�
R��
̌Z,ǦL�ǦR,ǦR� − iG�

L�ǦL�
̌Z,ǦL�,ǦR� .

�62�

We have introduced above the conductance parameters58

GT/Gq = 2�n
Tn, �63�

GMR/Gq = �n
TnPn, �64�

G�
L�R�/Gq = 2�n

�Tn − 1�d�n
L�R�, �65�

G�
L�R�/Gq = �n

Tnd�n
L�R�/2. �66�

The values of the coefficients GT, GMR, G�
L�R�, and G�

L�R� are
difficult to predict because they depend on the detailed mi-
croscopic structure of the interface. These parameters can, in
principle, be large compared to Gq because, although the
derivation of Eqs. �61� and �62� assumes that Tn, Pn, and

d�n
L�R� are small, the definitions, Eqs. �63�–�66�, involve a

summation on a numerous number of channels. The param-
eter GMR can be finite when Pn�0 and the parameters G�

L�R�

and G�
L�R� can be finite due to the SDIPS. From Eqs.

�63�–�66�, G�
L and G�

R are likely to be small compared to GT

and G�
L�R�. This is why these coefficients were disregarded so

far for studying the effects of the SDIPS on the supercon-
ducting proximity effect. In contrast, it is possible to have
G�

L�R��GT as well as G�
L�R��GT, using a spin-dependent in-

terface potential V̄b.24 We also note that the hypothesis Pn
�1 imposes GMR�GT. We have checked that in the normal-
state limit, Eqs. �61� and �62� agree with the boundary con-
ditions introduced in Refs. 35 and 36 provided the reflection-
and transmission-mixing conductances Gmix

L�R�,r and Gmix
t ap-

pearing in these boundary conditions are replaced by their
developments at first order in Tn, Pn, and d�n

L�R�, i.e.,

Gmix
L�R�,r → �GT + iG�

L�R��/2

and

Gmix
t → �GT/2� + i�G�

L + G�
R�

�see Appendix C for details�.
We now briefly review the physical effects of the coeffi-

cients GT, GMR, and G�
L�R�. The term in GT in Eqs. �61� and

�62� corresponds to the term derived in Ref. 17 for
superconducting/normal-metal interfaces. This term is re-
sponsible for the superconducting proximity effect occurring
in a normal-metal layer or a ferromagnetic layer in contact
with a superconductor. The parameter GMR accounts for the
spin dependence of the contact tunnel probabilities and thus
leads to magnetoresistance effects.28,29,32 In a ferromagnet F
subject to the proximity effect, the ferromagnetic exchange
field causes spatial oscillations of the isotropic Green’s func-

tion Ǧ, which results, e.g., in spatial oscillations of the den-
sity of states of F. It has been shown that the G�

L�R� terms can
shift these oscillations.24–26 The G�

L�R� terms also induce Zee-
man effective fields inside thin superconducting or normal-
metal layers.22–24 In principle, in noncollinear geometries en-
closing several ferromagnetic elements with noncollinear
magnetizations, the SDIPS terms can induce spin-precession
effects.

Note that, so far, we have considered that the interface

potential V̄b is spin polarized along the Z� direction. In the
general case, due to interface effects, it is possible that the

spin-dependent part of the interface potential V̄b is polarized
along a direction m� different from the bulk exchange-field
direction of contacts L or R. It is also possible that the con-
tact belongs to a circuit enclosing several ferromagnets with
noncollinear magnetizations, or ferromagnets with a spatially
dependent magnetization direction. In these cases, Eqs.
�39�–�41� are still valid. One can furthermore generalize the
BCIGF Eqs. �60�–�62� to an arbitrary spin reference frame
�
̌X , 
̌Y , 
̌Z� by replacing 
̌Z by m� · 
�̌ .

As we have already explained in Sec. IV, the use of trans-
fer matrices for the derivation of Eqs. �61�–�66� allows to
obtain results for the Tn→0 limit, which must be performed
after an explicit calculation of the BCIGF. From Eq. �65�,
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even if a channel n is perfectly reflected at the L /R boundary,
it can contribute to the matrix current due to the spin depen-
dence of the reflection phase d�n

L�R�. We will recover this
result in Sec. VIII A for a S /FI contact, using an approach
without transfer matrices.

E. Discussion on the matrix current conservation and the
spin-dependent circuit theory

In this section, we discuss the nonconservation of the ma-
trix current in the general case. We have already seen in Sec.
VII B that the full matrix current is conserved across an in-
terface in the spin-degenerate case. In the spin-dependent

situation, one finds from Eqs. �22� and �38� that ǏR���
=2iGq Trn,s��̂3M̄g̃L�M̄�†� /�. Since M̄ has a structure in the
spin subspace, the cyclic property of the trace Trn,s cannot be

used anymore to relate ǏL��� and ǏR���. Hence, nothing im-

poses ǏL���= ǏR��� in the general case. Reference 24 illus-
trates that in the case of a simple S /F bilayer with a homo-

geneous magnetization in F, ǏL���� ǏR��� is already possible.

Note that ǏL���� ǏR��� does not violate particle current con-
servation through the interface although the average current

flowing at side Q of the contact is determined by ǏQ, i.e.,

�IQ� =
1

16e
�

−�

�

d� Tr�
��̌3ǏQ
K���
 . �67�

Indeed, the above equation leads to

�IL� =
Gq

8e
�

−�

�

d� Trns�
��̌3�̂3g̃L
K


and

�IR� =
Gq

8e
�

−�

�

d� Trns�
��̌3�̂3M̄g̃L
KM̄†
 .

Since M̄ is proportional to the identity in the Keldysh space,
one can use the cyclic property of the trace Trns�
 in the
above equations, to show that �IL�= �IR�. It is important to
point out that the nonconservation of the matrix current at
the L /R boundary does not affect the applicability of Eqs.
�39�–�41�. The fact that the matrix current is not conserved
through a spin-dependent interface has the obvious reason
that only charge conservation is required by fundamental
laws whereas other quantities are not conserved in general. It
depends on the symmetry of the Hamiltonian describing the
barrier, which quantities are conserved in addition to charge.
If the barrier potential is spin independent, all elements of
the matrix current are conserved. In general, this is not the
case anymore for spin-dependent barriers. An extreme case
illustrating this situation is provided by an interface between
a FI and a metal. In the FI, the concept of a matrix current
does not even exist although the FI influences the adjacent
metal due to the proximity effect. We will discuss this case in
Sec. VIII.

The BCIGF derived in this paper allow to generalize the
“circuit theory” of Ref. 37 to the case of multiterminal cir-

cuits which enclose superconductors, normal metals, ferro-
magnets, and ferromagnetic insulators. In the approach of
circuit theory, a system is split up into reservoirs r �voltage
sources�, connectors c �contacts, interfaces�, and nodes n
�small islands� in analogy to classical electric circuits. Each
reservoir or node is characterized with an isotropic Green’s
function with no space dependence, which plays the role of a
generalized potential. Circuit theory requires to apply gener-

alized Kirchhoff’s rules on the matrix current Ǐ. We have

seen above that Ǐ is not conserved through the contacts in the
general case but this is not a problem since we know how to
express the matrix current at both sides of the contact. We

will note Ǐc
n the matrix current flowing from the connector c

into node n, which is given by Eqs. �39� and �40�. One must
be careful to the fact that the matrix current is not conserved
either inside the nodes due the terms on the right-hand side
of the Usadel Eq. �E1�. To compensate for the nonconserva-

tion of Ǐ inside node n, one can introduce a leakage matrix
current

Ǐleakage
n = 4�Gq�0Vn�− i��̌3 + �̌ + iEex
̌Z,Ǧn� �68�

which accounts for the “leakage” of quantities such as, for
instance, electron-hole coherence or spin accumulation. In

the above expression, Ǧn, �̌, and Eex, refer to the values of
the isotropic Green’s function, gap matrix, and exchange
field inside n, and Vn is the volume of the node. The leakage

matrix current Ǐleakage
n can be viewed as flowing from an ef-

fective “leakage terminal.” It must occur in the generalized
Kirchhoff’s rule for node n, i.e.,

Ǐleakage
n + �c

Ǐc
n = 0

with the index c running on all the contacts connected to
node n. We refer the reader to Refs. 37 and 59 for more
details on circuit theory.

VIII. CONTACT BETWEEN A METAL AND A
FERROMAGNETIC INSULATOR

A. Boundary conditions

In the case of a contact between a metal and a ferromag-
netic insulator, one can perform a calculation similar to the

one of the metallic case without using the transfer matrix M̄
but a simpler “pseudotransfer” matrix M which involves only
reflection phases against the FI �see definition below�. This
facilitates a development of the BCIGF at higher orders in
the SDIPS parameters. We assume that the ferromagnetic
insulator is located at the right side �z�0� of the contact and
that the left side L is a BCS superconductor, a normal metal,
or a ferromagnet, which satisfies Eq. �10�. We divide L into a
ballistic zone, an isotropization zone and a diffusive zone
like in Fig. 1. We directly consider the case where the contact
locally conserves the transverse channel index and spins
along Z� . In this case, one can introduce a reflection phase
shift �n+
d�n /2 such that the left-going and right-going
quasiparticle wave functions in the nth channel of L are re-
lated by
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�n,−
�,
�− cL,�� = ei��n+
d�n/2��n,s+

�,
 �− cL,�� .

Using this relation, one can check that the calculations of
Secs. IV–VI can be repeated by replacing the ballistic

Green’s function g̃R by �̂1g̃L�̂1, ǦR by ǦL, and the transfer

matrix M̄ by a pseudotransfer matrix M=M̂0 exp��X�. The

nth diagonal elements of M̂0 and �X in the transverse chan-
nel subspace write

M̂n
0 = �cos��n��̂0 + i sin��n��̂3�
̌0 �69�

and

�Xn = id�n�̂3
̌Z/2. �70�

Since M̂0 commutes with ǦL and �X and �M̂0�†M̂0=1, we
find

ǏL��� = 2Gq Trn,s��1 + �Ỹ�−1�ǦL�̂3 + 1� − 1� �71�

with

�Ỹ = �ǦLe−�XǦLe�X − 1�/2. �72�

Hence, quite generally, the spin-averaged reflection phases

�n do not contribute to ǏL���. Equation �71� can be traced out
numerically. Alternatively, one can achieve further analytical

progress by expanding ǏL��� with respect to the spin-

dependent part �Ỹ. We have �1+�Ỹ�−1=1+�n�−�Ỹ�n. There-
fore, at fourth order in d�n we obtain

2ǏL��� = iG�,1�
̌Z,ǦL� + G�,2�
̌Z,ǦL
̌ZǦL�

+ iG�,3�
̌Z,ǦL�
̌ZǦL�2� + G�,4�
̌Z,ǦL�
̌ZǦL�3�
�73�

with the conductance parameters

G�,1/Gq = − 2�n
d�n − �n

d�n
3/24, �74�

G�,2/Gq = �n
d�n

2/2 + �n
d�n

4/48, �75�

G�,3/Gq = �n
d�n

3/8, �76�

G�,4/Gq = − �n
d�n

4/32. �77�

In the normal-state limit, we have checked that Eq. �73�
agrees with the BCIGF presented in Refs. 35 and 36 �see
Appendix C for a detailed comparison�. The term in G�,1 of
Eq. �73� has already been used in Refs. 22 and 23. At first

order in d�n, it is the only term contributing to ǏL, and it can
be recovered from Eqs. �61� and �63�–�66� by using Tn=0
and d�n

L=d�n. At higher orders in d�n, the value of G�,1 is

renormalized and new terms occur in the expression of ǏL.
The second-order term has a straightforward interpretation
since it has exactly the same matrix structure as the self-
energy due to scattering by paramagnetic impurities in a nor-
mal metal60,61 or due to magnetic disorder along the Z� direc-

tion in a ferromagnet.62 The scattering of Cooper pairs at the
spin-active interface leads to a coupling between spin-singlet
and spin-triplet components, which, due to the random scat-
tering at second order leads to pair breaking. In a similar
fashion, we can understand the higher order terms in Eq. �73�
as a result of multiple scattering at the S /FI interface. Note
that in this section, we have assumed that the FI side of the
contact is magnetized along the Z� direction. If the FI is mag-
netized along a direction m� �Z� , one can describe the contact
in the spin reference frame �
̌X , 
̌Y , 
̌Z� by replacing 
̌Z by
m� ·
�̌ in Eq. �73�.

B. Example of a S ÕFI bilayer

To illustrate some effects of the G�,i coefficients, we now
consider the case of a S /FI bilayer, with S located at z
� �0,dS� and FI at z�dS. Throughout this section, we re-
place the energy −i� appearing in the Usadel equation by
−i�+ , where the phenomenological collision rate  ac-
counts for inelastic processes.63 Inside S, the retarded part of
the isotropic Green’s function can be parametrized with a
so-called pairing angle !


S such that

Ǧr = �
cos�!↑

S� 0 0 sin�!↑
S�

0 cos�!↓
S� sin�!↓

S� 0

0 sin�!↓
S� − cos�!↓

S� 0

sin�!↑
S� 0 0 − cos�!↑

S�
� .

Let us first assume that dS��S so that one can use the qua-
dratic approximation !


S�� ,x�=!

0 −"
�x /�S�2 and a constant

superconducting gap ��x�=�0 inside S �see, e.g., Ref. 24�.
For z� �0,dS�, the Usadel equations �see Appendix E� lead
to

"
 =
�0 cos�!


0� + �i� −  �sin�!

0�

2�BCS
. �78�

We have introduced above the bulk BCS gap �BCS of S. The
value of !


0 can be found by identifying Eq. �78� with Eq.
�73�, i.e.,

2"
ds/�S = i#�,1
 sin�!

0� + #�,2 sin�2!


0� + i#�,3
 sin�3!

0�

+ #�,4 sin�4!

0� �79�

�see Appendix D for details�. We have introduced above
#�,i=G�,i�S�S /A. Note that the value of �0 must be calcu-
lated self-consistently with !


0 , see, e.g., Ref. 24. We will
first consider the case G�,2=G�,3=G�,4=0, for which Eqs.
�78� and �79� yield

!

0 = arctan� �0

− i� +  + i#�,1

�S

ds
�BCS� . �80�

From the above equation, G�,1 induces an effective Zeeman
field Hef f =2i#�,1�S�BCS /dsg$B inside a thin S layer, like the
G�

L�R� terms of Sec. VII D.22–24 The density of states �DOS�
in the S layer can be calculated as N�� ,x�
=N0�
Re�cos�!


S�� ,x��� /2, with N0 the normal-state density
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of states. The G�,1-induced effective Zeeman field Hef f splits
the superconducting peaks of the DOS, as shown by the
black dashed line in Fig. 2, left panel. Spin-splitting effects
in S /F systems were first intuited by De Gennes from a
generalization of Cooper’s argument.64,65 Later, Ref. 19 has
confirmed from a quasiclassical approach that the SDIPS can
induce a spin splitting of the DOS in a ballistic S /FI bilayer
with a thin S. However, the effect found by Tokuyasu et al. is
qualitatively different from ours. Indeed, in the ballistic
limit, Tokuyasu et al. find that the S /FI bilayer differs from
a S layer in an external field because the SDIPS induced
spin-splitting effect depends upon the quasiparticle trajec-
tory. In contrast, in the diffusive limit, we obtain a true ef-
fective Zeeman field Hef f which appears directly in the spec-
tral functions. On the experimental side, spin-splitted DOS
were observed in superconducting Al layers contacted to dif-
ferent types of FI as soon as 1986 �see Refs. 66–69�. How-
ever, the inadequacy of the ballistic approach of Tokuyasu et
al. for modeling the actual experiments was pointed out in
Ref. 69. In fact, most of the experiments on Al /FI interfaces
were interpreted by their authors in terms of a diffusive ap-
proach with no SDIPS and an internal Zeeman field added
arbitrarily in the Al layer �see Refs. 68–70�. Our approach
provides a microscopic justification for the use of such an
internal field. Remarkably, it was found experimentally69 that
the internal field appearing in S scales with ds

−1, in agreement
with our expression of Hef f.

We now discuss briefly the effects of the G�,2, G�,3, and
G�,4 terms. Assuming !


0 �2�, the linearization of Eq. �79�
leads to

!

0 =

�0

− i� +  + �S�BCS
i�#�,1 + 3#�,3�
 + 2#�,2 + 4#�,4

ds

.

�81�

Therefore, in this limit, G�,3 contributes to the Zeeman ef-
fective field like G�,1. Moreover, the coefficients G�,2 and

G�,4 lead to a decoherence effect similar to the decoherence
induced by the  term. However, it is clear from Eq. �79�
that this picture is not valid in the general case. Let us focus
on the effect of G�,2. From Eq. �79�, in the nonlinearized
limit, #�,2 occurs together with a sin�2!


0� in the expression
of "
. Therefore, as already pointed out in Sec. VIII A, in the
general case, it is more relevant to compare the effect of #�,2
to that of paramagnetic impurities which would be diluted
inside S. The analogy to magnetic disorder can be under-
stood as arising due to successive reflections on the S /FI
interface with random spin-dependent phase shifts. To study
the effect of #�,2 in the general case, we have calculated the
density of states N�� ,x� numerically. Our code takes into
account the self-consistency of the superconducting gap ��x�
in the S layer and is valid for arbitrary values of dS.71 Figure
3 compares the effect of  �0 �top panel� with the effect of
G�,2�0 �bottom panel�, for G�,1=0. As expected, we find
that the effect of G�,2 on the DOS of a thin S is quite similar
to the effect of paramagnetic impurities which would be di-
luted inside the bulk of S.72,73 First, a weak G�,2 widens the
BCS peak in a way which is qualitatively different from  
since the curvature of the DOS for ���BCS has opposite
signs in the two cases. Second, even a very small  leads to
a finite zero-energy DOS whereas a small G�,2 reduces the
gap appearing in the DOS but preserves N�� ,x�=0 for small
energies. For larger values of G�,2, we expect a gap suppres-
sion in the DOS �not shown in Fig. 3�. Note that in Fig. 3, for
#�,2=0.1,  =0, and dS /�S=0.5, the gap of the DOS would be
reduced but still finite �not shown�. In these conditions, using
a small  can trigger the gap suppression as shown by the
black full line in Fig. 4, right panel. In the G�,1�0 case, the
effects of G�,2 on a thin S remain qualitatively similar, in
particular, the gap reduction in the DOS still occurs, com-
bined with the G�,1-induced spin splitting. Figure 2, left

FIG. 2. �Color online� Density of states N�� ,x=dS� in a S layer
contacted to a FI. The black dashed lines correspond to  =0.1 and
#�,2=0, and the blue full lines correspond to  =0.01 and #�,2

=0.03. The left panel corresponds to dS /�S=0.5 and the right panel
corresponds to dS /�S=3. In all cases, we have used #�,1=0.15,
#�,3=#�,4=0, and kBT=0.1�BCS.

FIG. 3. �Color online� Top panel: density of states N�� ,x=dS� in
a S layer contacted to a FI. The red dashed line corresponds to  
=0 and #�,2=0 in both panels. The black full lines in the top panel
correspond to  �0 and #�,2=0, and the blue full lines in the bot-
tom panel correspond to  =0 and #�,2�0. In all cases, we have
used dS /�S=0.5, #�,1=#�,3=#�,4=0, and kBT=0.1�BCS.
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panel compares a case with G�,2=0 and a large  �black
dashed line� with a case with G�,2�0 and a small  �blue
full line�. The two cases can easily be discriminated due to
the different curvatures in the DOS. Importantly, the analogy
between a paramagnetic impurity term and the G�,2 term is
not complete since G�,2 occurs in the BCIGF whereas para-
magnetic impurities would contribute directly to the Usadel
equation. This discrepancy is revealed by the dependence of
the DOS on dS. Figure 4 presents the DOS at the left and
right side of the S layer for different values of dS and G�,1
=0. We obtain a strong dependence of the G�,2 DOS widen-
ing on x and dS. First, for dS /�S=0.5, the DOS at the left and
the right sides of S �left and right panels� are almost identical
with a suppressed gap for the parameters we consider. When
dS increases, the gap reappears in the DOS. For dS��S, the
DOS at the left side of S tends to the bulk BCS DOS, with no
effect of G�,2, whereas the DOS at the right side of S still has
a reduced gap. In this limit, one can check that the reduction
of the gap occurs for a slab of S of thickness ��S near the
S /FI interface. In contrast, paramagnetic impurities would
affect the bulk of S. Let us now consider the case G�,1�0
and dS large. In this case, Ref. 25 has shown that the
G�,1-induced spin splitting of the DOS can persist in a slab
of S of thickness ��S near the S /FI interface. The right panel
of Fig. 2 shows an example of DOS at x=dS for dS=3�S, in
the case G�,1�0, G�,2=0, and a large  �black dashed line�,
and in the case G�,1�0, G�,2�0, and a small  �blue full
line�. In the first case, the G�,1-induced spin splitting of the
DOS is not visible anymore because Hef f scales with 1 /dS
and thus becomes too small compared to the large value of  
used. In the second case, the double-gap splitting is still
slightly visible as a cusp in the DOS curve because the G�,2
DOS widening also decreases with dS. The effects of the G�,3
and G�,4 terms in the general case will be presented else-
where. Before concluding, we note that in circuits enclosing
several FI with noncollinear magnetizations and BCS super-
conductors, it has been found that the G�,1 term can induce
spin-precession effects which lead to superconducting corre-
lations between equal spins.30

IX. CONCLUSION

To model the behavior of electronic hybrid circuits, a
proper description of the contacts between the different ma-

terials is crucial. In this paper, we have derived general
boundary conditions relating isotropic Green’s functions at
both sides of the interface between two diffusive materials
�Eqs. �39�–�41��. These BCIGF are valid for a circuit enclos-
ing superconductors, normal metals, and ferromagnets, in a
possibly noncollinear geometry. In general, they require the
knowledge of the full contact scattering matrix, an informa-
tion usually not available for realistic interfaces. However,
we have shown that in the limit of a specular tunnel contact
with weakly spin-dependent scattering properties, the BCIGF
can be expressed in terms of a few parameters, i.e., the tun-
nel conductance GT of the contact, a parameter GMR which
accounts for the spin dependence of the contact scattering
probabilities, and four parameters G�

L�R� and G�
L�R� which are

finite when the contact exhibits a SDIPS �Eqs. �61� and
�62��. In the case of a contact with a FI side, we could
simplify the BCIGF for a stronger SDIPS �Eq. �73��. We
believe that the various spin-dependent BCIGF derived in
this paper represent a solid basis for further developments on
superconducting hybrid circuits.
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APPENDIX A: SCATTERING DESCRIPTION OF A
SPECULAR AND SPIN-CONSERVING CONTACT

1. Structure of the electronic scattering matrix

In this section, we assume that the transverse channel in-
dex n and the spin index 
� �↑ ,↓
, corresponding to spin
components along Z� , are conserved when electrons cross the

potential barrier V̄b between the two ballistic zones. In this
case, the electronic scattering matrix Se is diagonal in the
�transverse channel� � spin subspace. The scattering subma-
trix associated to electrons with spins 
 of the nth transverse
channel writes

Sn

e = 	rL,n
 tR,n


tL,n
 rR,n


 . �A1�

Here, rL�R�,n
 denotes the reflection amplitude at side L�R� of
the barrier and tR�L�,n
 the transmission amplitude from side
R�L� to side L�R�. Flux conservation imposes, for 

� �↑ ,↓
, �Q��L,R
�arg�rQ,n
�−arg�tQ,n
��=��2�� and 1
− �rQ,n
�2= �tQ,n
�2=Tn
. In addition, spin conservation along
Z� allows to map the scattering description of each spin com-
ponent 
 onto a spinless problem. Time reversal symmetry in
each of these spinless problems implies arg�tL,n
�
=arg�tR,n
�. Therefore, one can use, without any loss of gen-
erality

FIG. 4. �Color online� Density of states in the S layer contacted
to a FI, for x=0 �left panel� and x=dS �right panel�, and different
values of dS /�S. In all cases, we have used #�,2=0.1, #�,1=#�,3

=#�,4=0,  =0.025, and kBT=0.1�BCS.
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Sn

e = 	 �1 − Tn
ei�n


L
i�Tn
ei��n


L +�n

R �/2

i�Tn
ei��n

L +�n


R �/2 �1 − Tn
ei�n

R 


with �n

L�R�=arg�rL�R�,n
�. The matrix Sn


e is entirely deter-
mined by Tn
, �n


L , and �n

R . In this paper, we use the param-

etrization Tn
=Tn�1+
Pn� and �n

L�R�=�n

L�R�+
�d�n
L�R� /2�

�Eqs. �42� and �43��.

2. Expression of the transfer matrix with scattering
parameters

In this section, we assume that the transmission ampli-
tudes tL�R�,n
 are finite. With the hypotheses made in Appen-
dix A 1, the electronic transfer matrix Me is also diagonal in
the �transverse channel� � spin subspace. In the propagation
direction subspace, the submatrix Mn


e has elements51

Mn
,+,+
e = �tL,n


† �−1, �A2�

Mn
,+,−
e = rR,n
�tR,n
�−1, �A3�

Mn
,−,+
e = − �tR,n
�−1rL,n
, �A4�

Mn
,−,−
e = �tR,n
�−1. �A5�

We have used above + /− to denote the right/left-going
propagation direction. Using Eqs. �23� and �A2�–�A5� and
the parametrization introduced in Appendix A 1, one can

obtain and expression for the matrix M̄ in terms of Tn, Pn,
�n

L�R�, and d�n
L�R�. At first order in Pn and d�n

L�R�, this leads to
the expressions �44�–�48�.

APPENDIX B: CALCULATION OF ǏL
(1)(ε) FOR A S ÕF

CONTACT

In this section, we give details on the calculation of the

contribution ǏL
�1���� to the matrix current ǏL��� to first order in

�X̄. Using Eq. �54�, one can rewrite Eq. �59� as

ǏL
�1���� = − 4Gq Trn�T̂0�4 + T̂0��ǦL,ǦR
 − 2��−1

�Trs�W̃�T̂0�4 + T̂0��ǦL,ǦR
 − 2��−1
 . �B1�

The central term

W̃ = �ǦRǦL + Q̂0
−1��Ṽ�ǦRǦL + Q̂0

−1��1 + �̂3ǦL� �B2�

of this expression can be decomposed as W̃=� j=1
4 W̃j with

W̃1 = Q̂0�X̄ǦRǦL + ǦR�X̄†Q̂0ǦL + ǦLǦR�X̄Q̂0
−1

+ ǦLQ̂0
−1�X̄†ǦR, �B3�

W̃2 = Q̂0�X̄Q̂0
−1 + ǦR�X̄†ǦR + ǦLǦR�X̄ǦRǦL

+ ǦLQ̂0
−1�X̄†Q̂0ǦL, �B4�

and W̃3�4�=W̃1�2��̂3ǦL. We now develop the trace over the
propagation direction index s in Eq. �B1�, using expressions

�46�, �56�, and �57�, and keeping in mind that ǦL and ǦR

have no structure in the E subspace. We find Trs��X̄�
=Trs��X̄†�=Trs�Q̂0�X̄Q̂0

−1�=Trs�Q̂0
−1�X̄†Q̂0�=0 so that

Trs�W̃2�=0. Due to Eqs. �56� and �57�, we find Trs�Q̂0�̂3�
=Trs�Q̂0

−1�̂3�=0. Hence, �X̄++ and the diagonal elements of

Q̂0 and Q̂0
−1 do not contribute to Trs�W̃1�. In contrast, the

development of Trs�W̃3�4�� involves both �X̄++ and �X̄+−. We
finally obtain

Trs�W̃1� = ��A,ǦR
,ǦL� , �B5�

Trs�W̃3� = ��C,ǦR�ǦL,ǦL� , �B6�

Trs�W̃4� = 2�B − ǦR��X̄++,ǦR�,ǦL� �B7�

with

A�F� = Q̂0,+−�X̄+−
� + �− �Q̂0,−+�X̄+−, �B8�

C = 2Q̂0,++�X̄++ + F , �B9�

B = �Q̂0,++
2 + Q̂0,+−Q̂0,−+��X̄++ + Q̂0,++F − �X̄++. �B10�

Expressing Q̂0 and �X̄ in terms of the scattering parameters
Tn, Pn, �n

L�R�, and d�n
L�R� �see Eqs. �46�–�48� and �56��, and

developing the trace on transverse channels in Eq. �B1�, we

obtain the expression �60� for ǏL
�1����.

APPENDIX C: GENERAL BOUNDARY CONDITIONS IN
THE NORMAL-STATE LIMIT

When there are no superconducting correlations in the

circuit, the isotropic Green’s functions ǦL�R� write, in the
Keldysh space

ǦL�R� = 	�̌3 ǨL�R�

0 − �̌3


 . �C1�

In this limit, the elements D̃L
−1 and D̃R

−1 appearing in the
general BCIGF Eqs. �39� and �40� take a simple form. For
instance, one finds, in the Keldysh space

D̃L
−1 = 	N̄L − �̌3N̄L�M̄†ǨRM̄ − ǨLM̄†M̄�N̄L

0 N̄L



with N̄L= �1+M̄†M̄�−1. A similar expression can be obtained

for D̃R
−1 by replacing M̄ by M̄−1 and ǨL�R� by ǨR�L�. For

comparison with Secs. VII and VIII, we specialize to the
case of a specular contact conserving spins along the inter-
face magnetization. Equations �39� and �40� give, for the
Keldysh electronic component of the matrix currents

ǏL
K,e��� = 2Gq Trn�− tRǨR

e tR
† + ǨL

e − rLǨL
erL

†� �C2�

and

ǏR
K,e��� = 2Gq Trn�tLǨL

etL
† − ǨR

e + rRǨR
e rR

†� . �C3�

Assuming that the contact is magnetized along Z� , we obtain
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ǏL�R�
K,e ���/2 = ��GT/2� + GMR�ǔ↑�ǨL

e,↑,↑ − ǨR
e,↑,↑�ǔ↑

+ ��GT/2� − GMR�ǔ↓�ǨL
e,↓,↓ − ǨR

e,↓,↓�ǔ↓

� Gmix
t ǔ↑ǨR�L�

e,↑,↓ǔ↓ � �Gmix
t ��ǔ↓ǨR�L�

e,↓,↑ǔ↑


 Gmix
L�R�,rǔ↑ǨL�R�

e,↑,↓ǔ↓ 
 �Gmix
L�R�,r��ǔ↓ǨL�R�

e,↓,↑ǔ↑

�C4�

with ǔ↑�↓�=1
 �
̌Z /2�,

Gmix
t = Gq�n

tL,n↓
� tL,n↑,

and

Gmix
L�R�,r = Gq�n

�1 − rL�R�,n↓
� rL�R�,n↑� .

We have checked that in the normal-state limit, Eq. �71�
leads to Eq. �C2� with tR=0. Equations �C2�–�C4� are in
agreement with the normal-state BCIGF presented, e.g., in
Eq. �2� of Ref. 36, up to a prefactor which corresponds to our
conventions.74 Importantly, the derivation of these equations
requires no particular assumptions on the values of tL�R�,n


and rL�R�,n
. In the normal-state limit, a strong spin relaxation
is often assumed in F so that the Gmix

t term is disregarded
�see, e.g., Eq. �5� of Ref. 36�. When the circuit includes

superconducting elements, the expressions of D̃L
−1 and D̃R

−1

involve, e.g., factors �1+ ǦL
a�r�M̄†ǦR

a�r�M̄�−1 instead of N̄L.
This is why the superconducting BCIGF are difficult to sim-
plify in the general case.

APPENDIX D: EQUILIBRIUM BOUNDARY CONDITIONS
IN THE CASE OF SUPERCONDUCTING

CORRELATIONS BETWEEN OPPOSITE SPINS ONLY

This appendix presents the boundary conditions obeyed
by the retarded part of the isotropic Green’s functions, in a
case where there are superconducting correlations between
opposite spins only. This situation occurs, e.g., when all the
ferromagnetic elements of the circuit are magnetized in col-
linear directions. For simplicity, we assume that no phase
gradient is present in the system. The conventions chosen in
Sec. II give, inside conductor Q

ǦQ
r = �

cos�!↑
Q� 0 0 sin�!↑

Q�
0 cos�!↓

Q� sin�!↓
Q� 0

0 sin�!↓
Q� − cos�!↓

Q� 0

sin�!↑
Q� 0 0 − cos�!↑

Q�
�

�D1�

with !↑
Q=!↓

Q in the spin-degenerate case. For a metallic con-
tact, using Eqs. �41�, �61�, and �62�, one obtains

−
A

�L

�!

L

�z
= GT sin�!


L − !

R� + iG�

L
 sin�!

L�

+ 2i sin�!

R�
�G�

R − G�
L cos�!


L − !

R��

�D2�

and

−
A

�R

�!

R

�z
= GT sin�!


L − !

R� − iG�

R
 sin�!

R�

− 2i
 sin�!

L��G�

L − G�
R cos�!


R − !

L�� .

�D3�

Interestingly, the GMR term vanishes from Eqs. �D2� and
�D3� so that the tunnel-rate polarization Pn does not contrib-
ute to the equilibrium BCIGF �we have checked that this
property remains true when phase gradients occur in the sys-
tem�. This result may seem surprising since Andreev reflec-
tions, which modify the equilibrium density of states in a
superconducting hybrid system, are suppressed when Pn is
strong.75 However, one should keep in mind that an Andreev
reflection process on the L /R interface involves together the
transmission �or reflection� of an electron and a hole from

opposite-spin bands through the V̄b barrier �see Fig. 5�.
These two processes have a joint probability which involves
Pn

2. In contrast, single quasiparticle processes, whose prob-
abilities involve Pn at first order, do not matter at equilib-
rium. We conclude that Pn vanishes from the equilibrium
BCIGF Eqs. �D2� and �D3� because we have derived these
equations at first order in Pn. Note that even in this limit, Pn
does not vanish from the boundary conditions obeyed by the
Keldysh part of the isotropic Green’s functions �see, e.g., Eq.
�C4��.

For completeness, we mention that in the case of a contact
with a FI side, using Eqs. �41� and �73�, one obtains

� ��
�

∆

��� �

��
�	� �

��

��� �

�	� �

��

FIG. 5. �Color online� Scheme representing two particular types
of Andreev reflection processes which can occur on a S /F interface
modeled like in Fig. 1. The ballistic, isotropization, and diffusive
zones of S and F are represented by gray, dotted, and purple areas,
respectively. Full �dashed� lines represent trajectories of electrons
�holes� from the ↑ �↓ � spin band. The superconducting gap � is
taken into account in the diffusive part of S only so that one can
consider that Andreev reflections occur at the interface between the
diffusive and isotropization zones of S. The upper part of the
scheme represents and electron incident from the F side, which is
transmitted by the barrier Vb as an electron, Andreev reflected on
the diffusive part of S as a hole, and transmitted again by Vb as a
hole, before joining the diffusive part of F again. The probability
associated to this process is proportional to Tn

2�1− Pn
2�. The lower

part of the scheme represents a more complicated trajectory which
also involves two reflections on Vb. The joint probability of these
reflections is �1−Tn�2−Tn

2Pn
2.
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−
A

�L

�!

L

�z
= iG�,1
 sin�!


L� + G�,2
L sin�2!


L�

+ iG�,3
L 
 sin�3!


L� + G�,4
L sin�4!


L� . �D4�

APPENDIX E: USADEL EQUATIONS

For completeness, we mention that the Usadel equations
corresponding to Eqs. �6� and �7� write, inside conductor Q
�see, e.g., Ref. 40�

�DQ
�

�z
�Ǧ

�

�z
Ǧ� = �− i��̌3 + �̌�z� + iEex�z�
̌Z,Ǧ� . �E1�

The gap matrix �̌ has a structure in the Nambu-spin sub-
space only, i.e., with our conventions

�̌�z� = �
��z�

��z�
��z��

��z��
� .

Using the angular parametrization of Appendix D, Eq. �E1�
leads to

�DQ

2

�2!


�z2 = �− i� + i
Eex�z��sin�!
� − ��z�cos�!
� .

�E2�
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ing this expression into Eq. �11� leads to Ǧqci�R� ,��= ǦL�R�C /�0
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